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Abstract— In this paper we review geodesics on  surfaces of 

revolution in classical differential geometry, and prove the  

analogous result in three-dimensional Minowski space; which 

does have three types of surfaces of rotations [9]. So there are 

three types of geodesics on those surfaces.  Then we introduce 

some examples explicitly in both cases; the usual one which 

Euclidean space and the cases of Minkowskian spaces 

considering a time-like geodesic. And then we visualize some 

geodesics on those surfaces using Maple. Which showing how 

the Euclidean and Minkowskian geodesics are differ. 

 

Mathematics Subject Classification: 51B20, 53A05, 53B30, 

53C22. 

 

Index Terms—Clairaut's Theorem, Curves and Surfaces 

Theory in Euclidean and Minkowskian spaces, Minkowski 

Space, Surfaces of evolution. 

 

I. INTRODUCTION 

In Euclidean space, the geodesics on a surface of revolution 

can be characterized by mean of Clairauts theorem, which 

essentially says that the geodesics are curves of fixed angular 

momentum. A similar result holds for three dimensional 

Minkowski space for time-like geodesics on surfaces of 

revolution about the time axis. Furthermore, this result holds 

for generalizations of surfaces of revolution to those surfaces 

generated by any one-parameter subgroup of the Lorentz 

group [see [4]]. 

     The change of signature from Euclidean to Minkowskian 

geometry results in a fascinating interplay between the two 

forms of geometry: there a formal algebraic similarity in many 

aspects of the geometry, coupled to important differences 

between the two, especially in global situations. The lecture 

notes of Lopez [4], for example, provide a detailed 

consideration of many of the aspects of three dimensional 

Minkowski space. The differences arise in various ways, and 

in Saad and Robert [9] they were concerned with some of the 

consequences of the fact that vectors in Minkowski space can 

be classified as time-like, light-like, or space-like by means of 

the inner product. Also in previous work of Saad and Robert 

[8] They consider surfaces of revolution in the situation with 

the closest analogy to the Euclidean situation, namely that of 

the time-like geodesics on surfaces obtained by rotating a 

time-like curve about the -axis in Minkowski space. There 

are, of course, other types of revolution Minkowski space [3]. 

This work will take [8] and [9] into account, and then using 

Pressely book [7] we provide analogue to approach the 
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geodesic on both cases, which finally give the equation of the 

geodesic on the surface, then we  provide some explicit 

examples cover all of which cases in both spaces. Therefore, 

we show that the geodesic explicitly on various surfaces of 

rotations, and then visualize some geodesics explicitly on 

chosen examples. 

      In section II and III we provide background material of 

geodesics of 3D surfaces of rotations in Euclidean and 

Minkowskian spaces respectively. Further, introduce the 

Clairaut's theorem of different cases. In section IV we give 

each chosen example separately with its visualization and 

geodesic behavior on each. 

II. GEODESICS 

Geodesics on surfaces are curves which are the analogues of 

straight lines in the plane. Lines can be locally thought of 

either as shortest curves or more generally straightest curves. 

     Definition 2.1 A curve on a surface  is called a 

geodesic if   or   is perpendicular to the 

tangent plane. 

     Equivalently, a curve on a surface  is geodesic if  

  is normal to the surface.                                          More 

extensive literature properties and notes about the geodesics 

on a surfaces can be found in [7], [10], [11] and [12] . 

 

A. Geodesics on Surfaces of Revolution 

Let    be a curve given be  

 

which an arc-length is parameterized geodesic on a surface of 

revolution. We need the differential equations satisfied by  

 Denote the differentiation with respect to  

by an overdot.  

 

     Proposition 2.1.1 [7]. On a surface of revolution, every 

meridian is a geodesic. And a parallel  is geodesic if 

and only if  when . 

      This proposition only deals with these special cases. To 

understand the rest of geodesics; we need the following 

theorem; Clairaut's Theorem, which is very helpful for 

studying geodesics on surfaces of revolution.  

     As much of the following material will be on how this 

theorem transfers to other situations we give a detailed 

exposition of the proof. 

     Let   be a surface of revolution, obtained by rotating the 

curve   , ` ,  about the -axis, 

where we assume that , and    .  

Then  is parameterized by:                    

                                                               (1)                                                                                      

and has the first fundamental form 

                                                                             

                                 (2)   
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Or  

 
Now, From the Lagrangian 

                                                                                

           (3)        

Obtaining the Euler-Lagrangian equation  

  ,      , 

so that  is a constant of the motion. 

 

  If   is a unit-speed geodesic curve on a surface of 

revolution , and ,   are unit vectors tangent to the 

meridians and the parallels, also they are perpendicular 

since . 

     Assuming that the curve given by: 

                                                                    

                               (4)                                                                                                        

is a unit-speed and we have                                                                                                                                                                                           

               (5) 

Then 

                                                               

.                      (6) 

Since  , then 

                                                               

.                                            

(7) 

Therefore 

          or                     (8) 

   and then   

                                                                              

.                                                (9)                                                      

But the right hand side shows that    is constant (say  

), since . 

 

 The converse; if     is constant    along a unit-speed 

curve  in . Then 

                                                                                        

 .                                                                                (10)          

Also the equation     showed above (3). 

                                                                                          

 .                                                                                 (11) 

Differentiating (11) with respect to , we got 

                                                                                       

,                                                                  (12) 

                                                                                    

 .                                      (13) 

The term in brackets must be vanish everywhere on . 

      Because, if the term in brackets does not vanish at some 

point , then there is a number .              .  

Such that   for , and  coincides with the 

parallel   when   . This is 

Contrary to the assumption.  So 

                                                                                     

.                                                                                (14) 

     This establishes Clairaut’s theorem as follows, and we 

observe in passing that all meridians are geodesics. 

 Theorem 2.1.2. [11]. Let   be a geodesic on a surface of 

revolution  , let   be the distance function of a point of   

from the axis of rotation,  and let   be the angle between  

and the meridians of  . Then  is constant along . 

Conversely, if  is constant along some curve  in the 

surface, and if no part of  is part of some parallel of , then 

 is a geodesic. 

III. TIME-LIKE GEODESICS OF 3D SURFACES OF 

ROTATIONS IN  

 

In this section we observe three different types of surfaces of 

rotation in , and then review that the Clairaut's theorem 

can carry over to those three types; time-like,  space-like and 

null.  So we do the same and proof that as much as Clairaut's 

theorem does. 

 

A. 3D Surfaces of Rotations in  

The surfaces of rotation which embedded in  are 

classified into three different types upon the generator itself 

by mean of the inner product. i.e. As in Minkowski space 

three types of inner product (time-like, space-like and 

light-like) also the surfaces of rotations have three types of 

generators which 

means the axis of rotation. [see [[3],[4],[9]]. 

      Case (1) If the axis of rotation is the time-like axis  and 

without loss of generality we may assume that the curve  is 

lies in the - plane. Then the surface of rotation in this case 

can parameterize by 

                                                                  

.                              (15)       

where and   are smooth functions. 

      Case (2) If the axis of rotation is the space-like axis, 

without loss of generality, we have either the curve  is 

located in the -plane or - plane, then the surfaces of 

rotation around space-like axis can be parameterized by: 

 

                                                     

,         (16) 

or                                                          

                                                         

.       (17) 

respectively. 

       Case (3) Finally, if the axis of rotation is the line spanned 

by the light-like line of the plane , then the surface of 

rotation can be parameterized by 

                                

 .       (18)   The parameterizations (15) and (16) give the same 

surface of rotation but two different parameterizations. 

 

B.   Clairaut's Theorem in  

In this section, we will revise the Clairaut's theorem to the 

surfaces of rotations above. And illustrate that in each case we 

have Clairaut's theorem in Minkowski space. 

       Here we will generalize the first surface of rotation which 

is (15). 

 

                                        

.                                             (19) 
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The rotation of the curve is still about Euclidean plane. Also 

the functions   have the property of    

for the time- like condition. 

      First fundamental form of   has signature    

everywhere if generating curve is time- like. 

Since 

                                     

.           

      The geodesics on  are time-like, and given by: 

                                             

                                                       

(20) 

which is an arc-length parameterized geodesic. 

If  is a unit-speed geodesic time-like curve on a surface of 

revolution   . And   ,   are unit vectors tangent to the 

meridians and the parallels, also they are perpendicular since 

.  

      Assuming that the curve  given by: 

                                                                  

                                                   (21) 

   is a unit-speed, and we have  

                                                              

.                                             (22) 

Then 

     ,                                           (23) 

where  is the 3D Minkowski cross product. 

Since    , then 

                                                        

.                                                

(24) 

Therefore 

                or         ,        (25) 

and then 

                                                                                  

.                                                                                   (26) 

But the right hand side shows that  is constant (say  

), . 

       The converse if   is constant  along a 

unit-speed curve  in . Then 

                                                                                          

 .                                                                            (27) 

Also, from Lagrangian equation, we 

have . So 

                                                                                           

.                                                                                 (28) 

Differentiating (28) with respect to , we got 

                                                                                 

 ,                                                     (29) 

                                                                                   

.                                                         (30) 

The term in brackets must be vanish everywhere on .  

       Because, if the term in brackets does not vanish at some 

point , then there is a number  .    

Such that    for , and  coincides with the 

parallel    when   .  This is contrary to the 

assumption. So 

                                                                                 

                                                                          (31)  

      So, if we do the same procedure and conclusion we have 

for each case, the Clairaut's theorem can carry over to all cases 

of 3D Minkowski space [9]. Here we are interesting in 

providing some explicit examples satisfy the theorem. 

IV. EXAMPLES AND VISUALIZATIONS  

In this part of the paper, we present some examples of 

surfaces of revolution covering  and . And visualize 

the geodesics for a given surfaces in all cases. 

 

A. Example of visualization of surface in  

We use the Clairaut's theorem to determine the geodesics on 

surface of revolution, say pseudo-sphere in (see [7], p 

230). 

                                  

                               (32) 

The first fundamental form is given by 

                                                                                      

.                                                                         (33) 

 

Let us use , and re-parameterized the surface. 

It would be convenient. So the new parameterization of the 

surface is: 

                                         

 .                                                              

(34) 

Also the first fundamental form is : 

       .                                                                                (35) 

 

We have  for   to be well defined and smooth. If we 

have a unit-speed geodesic , then 

the unit condition gives: 

                                                                                   

.                                                                                    (36) 

Here, Clairuat's theorem gives: 

                                                                              

,                                                     (37) 

Where  is a constant, since   . Therefore,  

. If  , we get  is constant. And if and 

the above equation gives 

                                                                       

.                                                               (38) 

Hence, along the geodesic,  

                                                                  

.                       (39) 

So                                             

                                                                     

.                                                          (40) 

Then  

                                                                       

 ,                                                          (41) 

where  is constant. 
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         So the geodesic is parts from circles in the -plane, 

and lying in the region . Moreover all these circles have 

centre on the -axis, and insect in the -axis perpendicularly. 

The meridians correspond to straight lines perpendicular to 

the       -axis. 

     Now we need to visualize these parts of circles on the 

Pseudo-sphere to see the geodesics on the pseudo-sphere. 

From our supposition, we have , then 

. Also, 

                                                                                

                                                                          (42) 

                                                                           

                                                                      (43) 

                                         (44) 

                                                                         

                                                                       (45) 

So the curve on the pseudo-sphere is: 

.                               (46) 

Then the geodesic on the pseudo-sphere will be 

        

.                            (47) 

Now, we are ready to visualize the geodesic on the 

pseudo-sphere. 

        The corresponding geodesics on the pseudo-sphere itself 

are shown below (figure(1)).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Example of Visualization of Surface in   with 

Time-like Rotation 

Here we use the Clairaut's theorem to determine the geodesics 

on pseudo-sphere in , such that the rotation line is 

time-like. 

                       

                                          (48) 

 

The first fundamental form is given by 

                                                                            

.                                                                 (49) 

Lets again use  , and reparametrized the 

surface. So the new parametrization of the surface is: 

                                                 

      (50) 

Also the first fundamental form is : 

                                                                                              

.                                                                                    (51) 

We have   for   to be well defined and smooth. If we 

have a unit-speed geodesic , then the 

unit condition gives: 

                                                                                           

                                                                         (52) 

Here, Clairuat's theorem gives: 

                                                                                              

,                                                               (53) 

Where  is a constant, since . Therefore, . 

If , we get  constant. And if   and the above 

equation gives 

                                                                                            

.                                                                  (54) 

Hence, along the geodesic, 

                                                                                             

 ,                                                                (55) 

so 

                                                                                       

                                                        (56) 

then 

                                                                                               

 ,                                                          (57)  

where  is constant. 

         So the geodesic is parts from hyperbolas in the  

-plane, and lying in the region .  

Moreover all these hyperbolas insect in the  -axis . 

        Now we need to visualize these parts of hyperbolas on 

the Pseudo-sphere to see the geodesics on the pseudo-sphere. 

Again, from our supposition, we have , then 

. Also, 

                                                                                                

                                                                           (58) 

                                                                                               

                                                                   (59) 

Then, the parameters curve in  space, 

                           (60)                                                                                                                                              

                                                                                                                                       

                                                                                                        

.                                                          (61) 

So the curve on the pseudo-sphere is: 

Figure (1) 
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                         (62) 

 

Then the geodesic on the pseudo-sphere will be: 

    

                (63) 

 

Now, we are ready to visualize the geodesic on the 

pseudo-sphere. 

       The corresponding geodesics on the pseudo-sphere itself 

are shown below (figure (2)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

   
C.    Example of Visualization of Surface in   with 

Space-like Rotation 

Now, if we are doing the same with other cases, for example 

the surface of rotation which generated by space-like rotation, 

we have chosen an example to determine the geodesics on the 

surface in , such that the rotation line is - axis. We have 

chosen a surface of revolution very carefully to get solvable 

ordinary differential equation. Therefore the surface is: 

 

                       

                (64) 

which has first fundamental form is given by 

                                                                                        

.                                                                        (65) 

With the same calculation, we have the geodesic equation 

given: 

              (66)             

The corresponding geodesics on this surface itself are shown 

below (figure(3)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
D. Examples of Visualization of Surface in  with 

Light-like (Null) Rotation 

 

We will give an example to determine the geodesics on 

surface of revolution in , generated by null rotation. We 

have chosen a surfaces of revolution which is null rotation and 

satisfied the conditions above of the first fundamental form. 

So the surface could parameterize by: 

                   

               (67)  

That has the first fundamental form of 

                                                                                        

                                                                         (68) 

Such that,  

        From Clairaut's theorem, we got 

                                                                                                      

  ,                                                                       (69) 

so,  

                                                                                             

  .                                                                  (70) 

Therefore, we have the following ODE 

                                                                                        

 ,                                                                       (71) 

with solving the above equation numerically using , 

with Maple we get 

 

                                                                      

                                                      

(72) 

 

which the geodesic equation and  is constant. 

       Plotting the surface chosen and the geodesic equation 

which solved numerically.  And take the positive part of real 

line in -axis. We have (see figure (4)) 

 

Figure (2) 

Figure (3) 
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V. CONCLUSION AND FUTURE WORK 

To sum up, the geodesics vary from Euclidean to 

Minkowskian spaces; we can demonstrate that all geodesics 

on surfaces of rotation in Euclidean case are given by circles; 

while all geodesics of all different cases of surfaces of rotation 

in Minkowskian space are given by hyperbolas, whatever the 

parameterization.  

In the future work, we will try to generalize Clairaut's theorem 

including the possibility of the geodesics being space-like or 

null. Moreover, the Jacobi Field: is a vector field along a 

geodesic describing the difference between the geodesic and 

an "infinitesimally close" geodesic. We will try to think about 

geodesic deviation in surfaces of rotation in Minkowski 

space. 
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